class PHPExcel_Shared_JAMA_Matrix

Constants

POLYMORPHIC_ARGUMENT_EXCEPTION

ARGUMENT_TYPE_EXCEPTION

ARGUMENT_BOUNDS_EXCEPTION

MATRIX_DIMENSION_EXCEPTION

ARRAY_LENGTH_EXCEPTION

Properties

$A Matrix storage

Methods

__construct()

Polymorphic constructor

getArray()

getArray

getRowDimension()

getRowDimension

getColumnDimension()

getColumnDimension

get($i = null, $j = null)

get

getMatrix()

getMatrix

checkMatrixDimensions(Matrix $B = null)

checkMatrixDimensions

set($i = null, $j = null, $c = null)

set

identity($m = null, $n = null)

identity

diagonal($m = null, $n = null, $c = 1)

diagonal

getMatrixByRow($i0 = null, $iF = null)

getMatrixByRow

getMatrixByCol($j0 = null, $jF = null)

getMatrixByCol

Matrix
transpose()

transpose

float
trace()

trace

Matrix
uminus()

uminus

plus()

plus

plusEquals()

plusEquals

minus()

minus

minusEquals()

minusEquals

arrayTimes()

arrayTimes

arrayTimesEquals()

arrayTimesEquals

arrayRightDivide()

arrayRightDivide

arrayRightDivideEquals()

arrayRightDivideEquals

arrayLeftDivide()

arrayLeftDivide

arrayLeftDivideEquals()

arrayLeftDivideEquals

times()

times

power()

power

concat()

concat

Matrix
solve($B)

Solve A*X = B.

inverse()

Matrix inverse or pseudoinverse.

float
det()

det

Details

at line 84
__construct()

Polymorphic constructor

As PHP has no support for polymorphic constructors, we hack our own sort of polymorphism using funcnumargs, funcgetarg, and gettype. In essence, we're just implementing a simple RTTI filter and calling the appropriate constructor.

at line 141
getArray()

getArray

@return array Matrix array

at line 151
getRowDimension()

getRowDimension

@return int Row dimension

at line 161
getColumnDimension()

getColumnDimension

@return int Column dimension

at line 174
get($i = null, $j = null)

get

Get the i,j-th element of the matrix.

Parameters

$i
$j

at line 189
getMatrix()

getMatrix

Get a submatrix

at line 338
checkMatrixDimensions(Matrix $B = null)

checkMatrixDimensions

Is matrix B the same size?

Parameters

Matrix $B Matrix B @return boolean

at line 360
set($i = null, $j = null, $c = null)

set

Set the i,j-th element of the matrix.

Parameters

$i
$j
$c

at line 374
identity($m = null, $n = null)

identity

Generate an identity matrix.

Parameters

$m
$n

at line 388
diagonal($m = null, $n = null, $c = 1)

diagonal

Generate a diagonal matrix

Parameters

$m
$n
$c

at line 405
getMatrixByRow($i0 = null, $iF = null)

getMatrixByRow

Get a submatrix by row index/range

Parameters

$i0
$iF

at line 426
getMatrixByCol($j0 = null, $jF = null)

getMatrixByCol

Get a submatrix by column index/range

Parameters

$j0
$jF

at line 445
Matrix transpose()

transpose

Tranpose matrix

Return Value

Matrix Transposed matrix

at line 462
float trace()

trace

Sum of diagonal elements

Return Value

float Sum of diagonal elements

at line 478
Matrix uminus()

uminus

Unary minus matrix -A

Return Value

Matrix Unary minus matrix

at line 489
plus()

plus

A + B

at line 529
plusEquals()

plusEquals

A = A + B

at line 583
minus()

minus

A - B

at line 623
minusEquals()

minusEquals

A = A - B

at line 678
arrayTimes()

arrayTimes

Element-by-element multiplication Cij = Aij * Bij

at line 719
arrayTimesEquals()

arrayTimesEquals

Element-by-element multiplication Aij = Aij * Bij

at line 774
arrayRightDivide()

arrayRightDivide

Element-by-element right division A / B

at line 835
arrayRightDivideEquals()

arrayRightDivideEquals

Element-by-element right division Aij = Aij / Bij

at line 877
arrayLeftDivide()

arrayLeftDivide

Element-by-element Left division A / B

at line 919
arrayLeftDivideEquals()

arrayLeftDivideEquals

Element-by-element Left division Aij = Aij / Bij

at line 960
times()

times

Matrix multiplication

at line 1055
power()

power

A = A ^ B

at line 1109
concat()

concat

A = A & B

at line 1147
Matrix solve($B)

Solve A*X = B.

@param Matrix $B Right hand side

Parameters

$B

Return Value

Matrix ... Solution if A is square, least squares solution otherwise

at line 1163
inverse()

Matrix inverse or pseudoinverse.

@return Matrix ... Inverse(A) if A is square, pseudoinverse otherwise.

at line 1174
float det()

det

Calculate determinant

Return Value

float Determinant